Scalar and Vector Triple Products

IMPORTANT

Scalar and Vector Triple Products: Overview

This topic covers concepts, such as Scalar Triple Product, Magnitude of Scalar Triple Product of Three Vectors, Geometrical Interpretation of Scalar Triple Product, Volume of a Parallelepiped with Given Concurrent Edges, Vector Triple Product, etc.

Important Questions on Scalar and Vector Triple Products

MEDIUM
IMPORTANT

If a=5i^+6j^+7k^b=2i^+3j^+4k^,c=i^+2j^+3k^ and d=3i^+j^+5k^, then find a×b·c×d.

MEDIUM
IMPORTANT

If a=3i^+4j^+5k^b=2i^+3j^+4k^,c=i^+2j^+3k^ and d=3i^+j^+5k^, then find a×b·c×d.

MEDIUM
IMPORTANT

If a=3i^+4j^+5k^b=2i^+3j^+4k^,c=i^+3j^+5k^ and d=3i^+j^+5k^, then find a×b·c×d.

MEDIUM
IMPORTANT

If a=2i^+3j^+5k^b=4i^+3j^+3k^,c=i^+2j^+5k^ and d=2i^+j^+5k^, then find a×b·c×d.

MEDIUM
IMPORTANT

If a=2i^+3j^+4k^b=4i^+2j^+3k^,c=i^+3j^+5k^ and d=2i^+j^+3k^, then find a×b·c×d.

EASY
IMPORTANT

If a=3i^-j^+4k^, b=2i^+3j^-k^ and c=-5i^+2j^+3k^, then a·(b×c) is

EASY
IMPORTANT

a=ı^+ȷ^+k^, b=ı^-ȷ^+2k^ and c=xı^+x-1ȷ^-k^. If the vector c lies in the plane of a and b, then x=

EASY
IMPORTANT

Find unit vector perpendicular to i^-j^ and coplanar with i^+2j^ and i^+3j^.

HARD
IMPORTANT

Let a be a unit vector coplanar with i^-j^+2k^ and 2i^-j^+k^ such that a is perpendicular to i^-2j^+k^. If the projection of a along i^-j^+2k^ is λ units, then the value of 1λ2 is equal to

EASY
IMPORTANT

The points A4, 5, 1,B0,-1,-1,C3, 9, 4 and D-4, 4, 4 are

EASY
IMPORTANT

If aα-×β-+bβ-×γ-+cγ-×a-= 0- and atleast one of the scalars a, b, c is non-zero, then the vectors α-, β-, γ- are

EASY
IMPORTANT

If a, b, c are non-zero vectors such that a×b×c=13b c a, ca and θ is the angle between the vectors b & c then sinθ=

EASY
IMPORTANT

If a-=2i--3j-+5k-, b-=3i--4j-+5k- and c-=5i--3j--2k-, then the volume of the parallelepiped with co - terminus edges a-+b-, b-+c-, c-+a- is

EASY
IMPORTANT

If one of the vertices of a parallelepiped is origin and its edges are OA-, OB- and OC- where A(4, 3, 1), B(3, 1, 2) and C(5, 2, 1), then find the volume of this parallelepiped.

EASY
IMPORTANT

For three vectors u,  v, w, which of the following expressions are meaningful

EASY
IMPORTANT

For three vectors u,v,w which of the following expressions is not equal to any of the remaining three

EASY
IMPORTANT

a . a × b=

EASY
IMPORTANT

i^.j^×k^+j^.k^×i^+k^.i^×j^=

EASY
IMPORTANT

a  b  a × b

is equal to

EASY
IMPORTANT

If a and b be parallel vectors, then a c b=